
Unit 9 Data Access with ADO.NET

Structure:
9.1 Introduction

Objectives
9.2 Record Navigation
9.3 Add, Update and Delete Records

Updating record
Adding new record
Deleting a record

9.4 SQL Server and ADO .NET
9.5 Data Binding

Data binding with TextBox
Data binding with Data grid

9.6 Summary
9.7 Questions and Exercises
9.8 Suggested Readings

9.1 Introduction

In the previous unit, we discussed the data base connectivity and VB .NET support for the data
access. We explored the role of connection how to create a connection, establish a connection
and close the same after use. We learn to phrase question using SQL to fetch data from the
data base. The support from data set and data adapter while accessing the database.

In this unit we will be discussing the ADO .NET in data base access. Manipulation of data
means adding, deleting and updating of data in the database also we are going to explore the
navigation methods to browse through the data bases. This unit is also discussing the ADO
.NET support with SQL server and the data binding technology with the controls.

Objectives:
After studying this unit, you will be able to:
 write the code to navigate the records
 discuss the add, update and delete operations of data.
 explain the class available with SQL Ado.NET
 discuss the technique of data binding with the controls

9.2Record Navigation

Recording navigation is nothing but the moving of control across the database to view
the record. Generally navigation in any database is possible with the four operations
they are, move next, move previous, mover first and move last.

(i) Move Back One Record at a Time
To move backwards through the DataSet, we need to decrement the inc counter. This means
deducting 1 from whatever is currently in inc.

But we also need to check that inc does not go past zero, which is the first record in the
DataSet. Here's the code to add to your btnPrevious

If inc > 0 Then inc = inc - 1
NavigateRecords() Else
MsgBox(‘First Record’) End If

So the If statement first checks that inc is greater than zero. If it is, inc gets 1 deducted from.
Then the NavigateRecords() subroutine gets called. If inc is zero or less, then we display a
message.

When you have finished adding the code, you can test your program for output. Click the
Previous button first. The message box should display, even though no records have been
loaded into the textboxes. This is because the variable inc has a value of -1 when the form first
loads. It only gets moved on to zero when the Next button is clicked. You could amend your IF
Statement to this:

If inc > 0 Then inc = inc - 1
NavigateRecords() ElseIf inc = -1 Then
MsgBox("No Records Yet") ElseIf inc = 0 Then
MsgBox(‘First Record’) End If

This new If Statement now checks to see if inc is equal to minus 1, and displays a message if it
does. It also checks if inc is equal to zero, and displays the First Record message box.

(ii) Moving to the Last Record in the DataSet
To jump to the last record in the DataSet, you only need to know how many records have been
loaded into the DataSet - the MaxRows variable in our code. You can then set the inc counter
to that value, but minus 1. Here's the code to add to your btnLast:

If inc <> MaxRows - 1 Then inc = MaxRows - 1
NavigateRecords()
End If

The reason we're saying MaxRows - 1 is that the row count might be 5, say, but the first record
in the DataSet starts at zero. So the total number of records would be zero to 4. Inside of the If
Statement, we're setting the inc counter to MaxRows - 1, then calling the NavigateRecords()
subroutine.
That's all we need to do. So run your program. Click the Last button, and you should see the
last record displayed in your textboxes.
(iii) Moving to the First Record in the DataSet
Moving to the first record is fairly straightforward. We only need to set the inc counter to zero, if
it's not already at that value. Then call the Sub:

If inc <> 0 Then inc = 0
NavigateRecords() End If

Add the code to your btnFirst. Run your program and test out all of your buttons. You should be
able to move through the names in the database, and jump to the first and last records.

As yet, though, we don't have a way to add new records, to update records, or to delete them.
Let's do that next.

9.3 Add, Update and Delete Records

In the previous section, you learned how to move through the records in your DataSet, and how
to display the records in Textboxes on your form. We also see how to add new records, how to
delete them and how to Update a records.

Before we start the coding for these new buttons, it's important to understand that the DataSet
is disconnected from the database. What this means is that if you're adding a new record,
you're not adding it to the database: you're adding it to the DataSet Similarly, if you're updating
or Deleting, you doing it to the DataSet, and NOT to the database. After you have made all of
your changes, you THEN commit these changes to the database. You do this by issuing a
separate command. But we'll see how it all works.

You will need to add a few more buttons to your form - five of them. Change the Name
properties of the new Buttons to the following:
 btnAddNew

 btnCommit

 btnUpdate

 btnDelete

 btnClear

Change the Text properties of the buttons to "Add New Record ", "Commit Changes",
"Update Record ", "Delete Record", and "Clear/Cancel". Your form might look as depicted in
figure 9.1.

Fig. 9.1: Form design with updating controls

9.3.1 Updating record
To reference a particular column (item) in a row of the DataSet, the code is this:

ds.Tables("AddressBook").Rows(2).Item(1)

This will retrieve the data available from Item 1 on Row 2. You can also set a
value with the following syntax

ds.Tables("AddressBook").Rows(2).Item(1) = "Jane"

Now Item 1 Row 2 will consist of text "Jane". This will not affect the database. The alterations
will happen only in DataSet. To demonstrate this, enter the code to your btnUpdate

ds.Tables("AddressBook").Rows(inc).Item(1) = txtFirstName.Text
ds.Tables("AddressBook").Rows(inc).Item(2) = txtSurname.Text
MsgBox("Data updated")

Execute your application, and click the Next Record button to move to the first record. "John"
should be displayed in your first textbox, and "Smith" in the second textbox. Click inside the
textboxes and change "John" to "Joan" and "Smith" to "Smithy". Now you can click your Update
Record button. Move to the next record by clicking your Next Record button, and then move
back to the first record. You should see that the first record is now "Joan Smithy".

Close the application and run it again. Click the Next Record button to move to the first record.
It will still be "John Smith". The data you updated has been lost: it is because

Changes are made to the DataSet, and NOT to the Database
You require some extra code In order to update the database,.

Dim cb As New OleDb.OleDbCommandBuilder(da)

ds.Tables("AddressBook").Rows(inc).Item(1) = txtFirstName.Text

ds.Tables("AddressBook").Rows(inc).Item(2) = txtSurname.Text

da.Update(ds, "AddressBook") MsgBox("Data
updated")

The first new line is this:
Dim cb As New OleDb.OleDbCommandBuilder(da)

To update the database itself, you need something called a Command Builder. The Command
Builder will build a SQL string for you. In between round brackets, you type the name of your
Data Adapter, da in our case. The command builder is then stored in a variable, which we have
called cb.
The second new line is where the action is:

da.Update(ds, "AddressBook")

The da variable is holding our Data Adapter. One of the methods of the Data Adapter is
Update. In between the round brackets, you need the name of your DataSet (ds, for us). The
AddressBook part is optional. It's what we've called our DataSet, and is here to avoid any
confusion.

But the Data Adapter will then contact the database. Because we have a Command Builder, the
Data Adapter can then update your database with the values from the DataSet.

Without the Command Builder, though, the Data Adapter can't do it's job. Try this. Comment out
the Command Builder line (put a single quote before the D of Dim). Run your program again,
and then try and update a record. You'll get this error message as shown in figure 9.2.

 Fig. 9.2: Error Message

The error is because you have not got a command builder - a Valid Update Command. Delete
the comment from your Command Builder line and the error message goes away. You should
now be able to make changes to the database itself (as long as the Access database isn't Read
Only).

Try it out. Run your program, and change one of the records. Click the Update button. Then
close the program down, and load it up again. You should see your new changes displayed in
the textboxes.

9.3.2 Adding a new record
Adding a new record is slightly more complex. First, you have to add a new Row to the DataSet,
then commit the new Row to the Database.

But the Add New Record button on our form is quite simple. The only thing it does is to switch
off other buttons, and clear the textboxes, ready for a new entry. Here's the code for your Add
New Record button:

btnCommit.Enabled = True btnAddNew.Enabled
= False btnUpdate.Enabled = False
btnDelete.Enabled = False txtFirstName.Clear()
txtSurname.Clear()

So three buttons are switched off when the Add New Record button is clicked, and one is
switched on. The button that gets switched on is the Commit Changes button. The Enabled
property of btnCommit gets set to True. But, for this to work, you need to set it to False when
the form loads. So return to your Form. Click btnCommit to select it. Then locate the Enabled
Property in the Properties box. Set it to False. When the Form starts up, the button will be
switched off.
The Clear/Cancel button can be used to switch it back on again. So add this code to your
btnClear:

btnCommit.Enabled = False
btnAddNew.Enabled = True
btnUpdate.Enabled = True btnDelete.Enabled
= True inc = 0
NavigateRecords()

We're switching the Commit Changes button off, and the other three back on. The other two
lines just make sure that we display the first record again, after the Cancel button is clicked.
Otherwise the textboxes will all be blank.

To add a new record to the database, we'll use the Commit Changes button. So double click
your btnCommit to access its code. Add the following:

If inc <> -1 Then

Dim cb As New OleDb.OleDbCommandBuilder(da) Dim dsNewRow As
DataRow

dsNewRow = ds.Tables("AddressBook").NewRow()

dsNewRow.Item("FirstName") = txtFirstName.Text

dsNewRow.Item("Surname") = txtSurname.Text

ds.Tables("AddressBook").Rows.Add(dsNewRow) da.Update(ds,

"AddressBook")

MsgBox("New Record added to the Database")
btnCommit.Enabled = False btnAddNew.Enabled = True
btnUpdate.Enabled = True

btnDelete.Enabled = True End If

The code is somewhat longer than usual, but we'll go through it.

The first line is an If Statement. We're just checking that there is a valid record to add. If there's
not, the inc variable will be on minus 1. Inside of the If Statement, we first set up a Command
Builder, as before. The next line is this:

Dim dsNewRow As DataRow

If you want to add a new row to your DataSet, you need a DataRow object. This line just sets
up a variable called dsNewRow. The type of variable is a DataRow.

To create the new DataRow object, this line comes next: dsNewRow =

ds.Tables("AddressBook").NewRow()

We're just saying, Create a New Row object in the AddressBook DataSet, and store this in the
variable called dsNewRow. As you can see, NewRow() is a method of ds.Tables. Use this
method to add rows to your DataSet.

The actual values we want to store in the rows are coming from the textboxes. So we have
these two lines:

dsNewRow.Item("FirstName") = txtFirstName.Text
dsNewRow.Item("Surname") = txtSurname.Text

The dsNewRow object we created has a Property called Item. This is like the Item property you
used earlier. It represents a column in your DataSet. We could have said this instead:

dsNewRow.Item(1) = txtFirstName.Text
dsNewRow.Item(2) = txtSurname.Text

The Item property is now using the index number of the DataSet columns, rather than the
names. The results is the same, though: to store new values in these properties. We're storing
the text from the textboxes to our new Row

We now only need to call the Method that actually adds the Row to the DataSet:
ds.Tables(‘AddressBook’).Rows.Add(dsNewRow)

To add the Row, you use the Add method of the Rows property of the DataSet. In between the
round brackets, you need the name of your DataRow (the variable dsNewRow, in our case).

You should know what the rest of the code does. Here's the next line: da.Update(ds,

"AddressBook")

Again, we're just using the Update method of the Data Adapter, just like last time. The rest of
the code just displays a message box, and resets the button.

But to add a new Row to a DataSet, here's a recap on what to do:

 Create a DataRow variable

 Create an Object from this variable by using the NewRow() method of the DataSet Tables

property
 Assign values to the Items in the new Row
 Use the Add method of the DataSet to add the new row

A little more complicated, but it does work Try your program out. Click your Add New Record
button. The textboxes should go blank, and three of the buttons will be switched off. Enter a new
First Name and Surname, and then
click the Commit Changes button. You should see the message box telling you that a new
record has been added to the database. To see the new record, close down your program, and
run it again. The new record will be there.

9.3.3 Deleting a record
The code to delete a record is a little easier than last time. Double click your btnDelete and add
the following:

Dim cb As New OleDb.OleDbCommandBuilder(da)
ds.Tables("AddressBook").Rows(inc).Delete() MaxRows = MaxRows - 1

inc = 0 NavigateRecords()
da.Update(ds, "AddressBook")

Here you should first set up a Command Builder. Then we have this line:

ds.Tables("AddressBook").Rows(inc).Delete()

Just as there is an Add method of the DataSet Rows property, so there is a Delete method.
You don't need anything between the round brackets, this time. We've specified the Row to
delete with:

Rows(inc)

The inc variable is setting which particular Row we're on. When the Delete method is called, it
is this row that will be deleted.

However, it will only be deleted from the DataSet. To delete the row from the underlying
database, we have this again:

da.Update(ds, "AddressBook")

The Command Builder, in conjunction with the Data Adapter, will take care of the deleting. All
you need to is call the Update method of the Data Adapter.

The MaxRows line in the code just deducts 1 from the variable. This just ensures that the
number of rows in the DataSet matches the number we have in the MaxRows variable.

We also reset the inc variable to zero, and call the NavigateRecords() subroutine. This will
mean that the first record is displayed, after a record has been deleted.
Try out your program. Click the Next Record button a few times to move to a valid record. Then
click the Delete Record button. The record will be deleted from the DataSet AND the database.
The record that is then displayed will be the first one.

There's another problem, though: if you click the Delete Record button before the Next Record
button, you'll get an error message. You can add an If Statement to check that the inc variable
does not equal minus 1.

Another thing you can do is to display a message box asking users if they really want to delete
this record as shown in figure 9.3.

Fig. 9.3: Delete confirmation window
To get this in your own programme, add the following code to the very top of your Delete button
code:

If MessageBox.Show("Do you really want to Delete this Record?", _
"Delete", MessageBoxButtons.YesNo, _ MessageBoxIcon.Warning) =
DialogResult.No Then

MsgBox("Operation Cancelled")
Exit Sub
End If

The first three lines of the code are really one line. The underscore has been used to spread it
out, so as to fit on this page.
But we're using the new message box function:

MessageBox.Show()

In between the round brackets, we specifying the message to display, followed by a caption for
the message box. We then have this:

MessageBoxButtons.YesNo

You won't have to type all that out; you'll be able to select it from a popup list. But what it does is
give you Yes and No buttons on your message box.

After typing a comma, we selected the MessageBoxIcon. Warning icon from the popup list. But
you need to check which button the user clicked. This is done with this:

= DialogResult.No

Again, you select from a popup list. We want to check if the user clicked the No button. This will
mean a change of mind from the user. A value of No will then be returned, which is what we're
checking for in the If Statement.

The code for the If Statement itself is this:

MsgBox(‘Operation Cancelled’)
Exit Sub

This will display another message for the user. But most importantly, the subroutine will be
exited: we don't want the rest of the Delete code to be executed, if the user clicked the No
button.

And that's it for our introduction to database programming. You not only saw how to construct a
database program using the Wizard, but how to write code to do this yourself. There is an awful
lot more to database programming, and we've just scratched the surface. But in a beginner's
course, that's all we have time for.

9.4 SQL Server and ADO .NET

Now we are going to discuss the behavior and features that are related to ADO .NET data
provider for SQL server. The basic root namespace for
.NET is the System.Data. This supports the DataTable and DataSet objects to work with any
data type. Apart from this .Net supports two more namespaces for retrieving or accessing the
data.

System.Data.OleDb: Supports OLE DB data source such as Oracle, Jet etc. This name space
includes OleDbCommand, OleDbDataReader, OleDbConnection and OleDbDataAdapter. Using
these object we accessed database, that we discussed in the last unit

System.Data.SqlClient: it supports with SQL server 6.5 and above versions. Includes
SqlCommand, SqlConnection, SqlDataAdapter and SqlDataReader objects.

SQL Connection class
SqlConnection class cannot be inherited and establish an open connection towards the SQL
server database.

Public NotInheritable Class SqlConnection _

Inherits DbConnection _

Implements ICloneable

Has the SqlConnection constructor that initializes the instantiation of the SqlConnection class.
This constructor also accepts the connection string to establish a connection.

This class has methods that supports the database transitions like BeginTransaction,
changeDatabase, CreateCommand, GetSchema, GetType etc. Following are the list of events
supported by the SslConnection Such as Disposed, InfoMessage and StateChange.

SQLDataAdapter

The DataAdapter is an interface between the database and the dataset. It is located between
the connected and disconnected parts of Ado.Net as a connector. DataAdapter class will be
instantiated by the constructor that are generally overloaded. If we use the default constructor
for the DataAdapter, we need to specify the Command object for the actions performed. This
means that if we want to retrieve rows from the Data Source, we will have to set the Select
command property.

The DataAdapter class is not inheritable Declaration is

Punlic NotInheritable Class SqlDataAdapter Inherits DbDataAdapter_

Implements IDbDataAdapter, IDataAdapter,ICloneable

DataSet class
DataSet class consists of information about the set of tables and the relation among those set of
tables. Figure 9.4 depicts the DataSet and its related classes. DataSet will not have any idea
about the data source or the tables. This will be created dynamically whenever required based
on the data source. In SQL server provider, DataSet will be loaded with the help of
SqlDataAdapter. Once the data is loaded it is editable and we can manipulate the data without
disturbing the data source. Even the data base connectivity is not necessary for this action.
When the process is over we can create a new connection and update using the
SqlDataAdapter object.

Fig. 9.4: Model diagram for DataSet and related classes.

9.5 Data Binding

The term data binding has a literal meaning when it comes to Windows Form application. It
refers to the technique of interfacing elements of a data source with a graphical interface, such
as using a TextBox control to bind to a single value from a column. ADO .NET provides a neat
data binding infrastructure for graphical controls to seamlessly bind themselves to almost any
structure that contains data. This means the data source can be anything from an array value to
a set of row. Using data bindings in application essentially reduces the amount of code you
have to write for retrieving data from databases. It’s true that using data objects in code
provides greater control over data, but data binding can achieve the same result if used
properly.

9.5.1 Data binding with TextBox
This type of data binding comes under simple binding, here one-to-one association between an
individual control property and a single element of a data source happens. You can use it for
controls that show only one value at a time. For example, you can bind the Text property of a
TextBox control to a DataTable column. If the underlying data source is modified, the control’s
Refresh method updates the bound value reflecting any changes. We will see small Windows
Forms application that uses simple data binding to bind two TextBox controls to two different
columns of the Northwind database’s Employee table.

In this application we will bind two values to two TextBoxes to display the first and last name of
the employee.

1. In visual studio .NET create a new solution.
2. Add a VB. NET Windows application named DataBinding.

3. You should now be in Design view. In the Toolbox, either double-click the TextBox

control twice to produce two text boxes that you

can position on the form or drag two TextBox controls on to the form as shown in figure
9.5

Fig. 9.5: TextBox Controls in form

4. Press F7 to go to Code view. Add the following Imports directives. Imports
System.Data.Sqlclient

5. Go back to Design view by clicking the Design tab or by pressing Shift+F7, and double-

click the form to go to the underlying code. Your cursor should now be positioned in the
Form1_Load method, which was added when you double-clicked the form. Add the
following code

Private Sub Form1_Load(ByVal sender As System.Object, - Byval e As
System.EventArgs) Handles MyBase.Load

Dim thisConnection As New SqlConnection_

(“Server=(local)\netsdk;” &_”integrated security=sspi;”&_
“database=northwind”)

‘ Sql Query

Dim sql As String = “SELECT * FROM Employees” ‘ Create Data

Adapter

Dim da As new SqlDataAdapter(sql, thisconnection)

‘ Create and fill DataSet Da.Fill(ds,

“Employees”)

‘Bind to first name column of the employee table TextBox1.DataBindings.Add(“text”,

ds, “employees.firstname”) ‘Bind to lastname column of the employees table

TextBox2.DataBindings.Add(“text”, ds, “employees.lastname”)

End Sub

When you run this program you get output as shown in figure 9.6

Fig. 9.6: DataBinding text boxes bound to data columns

Each data-bound control in a Windows Forms application maintains a list of bindings for all its
data-bound properties. The bindings are in a property named DataBindings, which holds a
collection of type controlBindingsCollection. This collection can contain a number of individual
control property bindings, with each binding added using the Add method.

9.5.2 Data binding with Data grid
This comes under the complex data binding; it is an association between the control and one or
more data elements of the data source. You can perform this type of binding with controls that
allow more than one value to be displayed at one time, such as a data grid or a data list. Now
we are going to discuss this with an example using data grid, which displays all columns of the
Northwind database’s customers table.

Follow the steps below to develop complex data binding application

1. Add a VB. NET Windows application named ComplexBinding.

2. Add a DataGrid control from the Toolbox. Your form should look similar to the one
shown in figure 9.7.

Fig. 9.7: Data grid control
3. Press F7 to reach code window and add the following directive. Imports

system.Data.SqlClient

4. Double click the form to go to below code. Your cursor should now be positioned in

the Form1_Load method. Add the following code:

Private Sub Form1_Load(Byval sender As System.Object, Byval_ e AS
System.EventArgs) Handles MyBase.Load
‘ Create connection object
(“Server=(local)\netsdk;” &_”integrated security=sspi;”&_
“database=northwind”)

‘ Sql Query
Dim sql As String = “SELECT * FROM Employees”

‘ Create Data Adapter
Dim da As new SqlDataAdapter(sql, thisconnection)

‘ Create and fill DataSet Da.Fill(ds,
“Employees”)

‘Bind the data table to the data grid
DataGrid1.SetDataBinding(ds,”Customers”)
End Sub

5. Make this the startup project, and run the code with Ctrl+F5. You should see the

form in figure 9.8

Fig. 9.8: ComplexBinding data grid bound to data table
This data grid also works similar to the Text box control. Once you established a connection
with the dataSource, you populate a dataset from the customers table using a data adapter.
Next, you need to bind the DataGrid control to the newly populated dataset. We are doing this
with the following syntax:

DataGrid1.SetDataBinding(ds, “customers”)

The SetDataBinding method of the DataGrid control accepts two parameters: the data course
object and a string literal that describes a data member in the data source. Here, a data source
can be any object that’s capable of holding data, such us an array or table. The data member
describes what element to bind to the control. In the case, you used a dataset as the data
source, and the customers data table contained in the data set as a data member. A call to the

SetDataBinding method binds all columns of the customers data table to the DataGrid control at
runtime, which renders the data in the style of a spread sheet.

9.6 Summary

 Navigation of records means browsing through the data set. It does four different
operations like moving first, moving last, moving next and moving previous.

 Dataset are considered as the temporary buffer to hold the data with or without
connection. So the changes whatever happened will not be reflected until you do
explicitly.

 System.Data.OleDb and the System.Data.SqlClient are the two .NET namespaces that
support the SQL Server data access.

 Simple and complex binding can be done to display the single or group of data in the VB
.NET controls.

 Simple data binding can be done through the TextBox controls and the complex data

binding can be achieved with grid controls.
9.7 Questions and Exercises:
1. List and explain the navigation techniques with an appropriate example.

2. Explain the various data manipulation operations in the dataset.

3. Discuss the following a. SQLDataAdapter b. DataSet class

4. Explain data binding with TextBox control with example.

5. Brief the complex data binding with the data grid control.

9.8 Suggested Readings
 http://www.vkinfotek.com/dataset.html

 http://msdn.microsoft.com/en-us/library/system.data.sqlclient.qldataadapter. aspx?cs-
save-lang=1&cs-lang=vb#code-snippet-1

 http://www.codeproject.com/Articles/20326/ADO-NET-Data-Access-Component-
for-SQL-Server-in-Cs

 http://my.safaribooksonline.com/book/web-development/microsoft-
aspdotnet/0672323575/introduction-to-adodotnet/ch10lev1sec2

